Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps
نویسندگان
چکیده
a r t i c l e i n f o Remote sensing can be considered a key instrument for studies related to forests and their dynamics. At present, the increasing availability of multisensor acquisitions over the same areas, offers the possibility to combine data from different sensors (e.g., optical, RADAR, LiDAR). This paper presents an analysis on the fusion of airborne LiDAR and satellite multispectral data (IRS 1C LISS III), for the prediction of forest stem volume at plot level in a complex mountain area (Province of Trento, Southern Italian Alps), characterized by different tree species, complex morphology (i.e. altitude ranges from 65 m to 3700 m above sea level), and a range of different climates (from the sub-Mediterranean to Alpine type). 799 sample plots were randomly distributed over the 3000 km 2 of the forested areas of the Trento Province. From each plot, a set of variables were extracted from both LiDAR and multispectral data. A regression analysis was carried out considering two data sources (LiDAR and multispectral) and their combination, and dividing the plot areas into groups according to their species composition, altitude and slope. Experimental results show that the combination of LiDAR and IRS 1C LISS III data, for the estimation of stem volume, is effective in all the experiments considered. The best developed models comprise variables extracted from both of these data sources. The RMSE% on an independent validation set for the stem volume estimation models ranges between 17.2% and 26.5%, considering macro sets of tree species (deciduous, evergreen and mixed), between 17.5% and 29.0%, considering dominant species plots, and between 15.5% and 21.3% considering altitude and slope sets. Remote sensing of biophysical variables is a key component for the quantification of forest structure, volume, physiology and carbon fluxes in forests. At present, there are many studies that use remote sensing data for the estimation of forest parameters. This study is focused on Light Detection And Ranging (LiDAR) and multispectral data. These two data sources can be considered complementary, as one provides structural information and the other spectral information. LiDAR represents one of the best sources of information for investigating forest structural parameters (e.g., stem volume, basal area, or height), as it provides detailed data on the vertical structure of the canopy. Satellite multispectral data, like IRS 1C LISS III, provide spectral information of the ground cover, allowing the detection of forest composition and estimation …
منابع مشابه
SPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation
Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملThree-stage inversion improvement for forest height estimation using dual-PolInSAR data
This paper addresses an algorithm for forest height estimation using single frequency single baseline dual polarization radar interferometry data. The proposed method is based on a physical two layer volume over ground model and is represented using polarimetric synthetic aperture radar interferometry (PolInSAR) technique. The presented algorithm provides the opportunity to take advantages of t...
متن کاملSeeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height
The main study objective was to develop robust processing and analysis techniques to facilitate the use of small-footprint lidar data for estimating plot-level tree height by measuring individual trees identifiable on the three-dimensional lidar surface. Lidar processing techniques included data fusion with multispectral optical data and local filtering with both square and circular windows of ...
متن کامل